By studying a group of enzymes called phosphatases (protein and lipid phosphatases), our research team strives to identify the signaling and metabolic mechanisms that are crucial for normal hematopoiesis, and aberrant regulation of which is associated with hematologic disorders. Furthermore, we use the information gained from these studies to develope novel therapeutics or to improve current treatment for related blood disorders.

  • Molecular mechanisms by which activating mutations of PTPN11 cause leukemias
  • Experimental therapeutics for PTPN11 mutation-associated leukemias
  • Metabolic regulation of hematopoietic stem cells and leukemic stem cells

Hong Zheng, PhD; Postdoctoral Fellow

Fang Ni, PhD; Postdoctoral Fellow

Xiaoqin Wu, International Student

Wen-Mei Yu, Lab Manager

Leo Zhao, Undergraduate Student

Grace Xu, Undergraduate Student

  • Shen, J., W. M. Yu, M. Brotto, J. A. Scherman, C. Guo, C. Stoddard, T. M. Nosek, H. H. Valdivia, and C. K. Qu. Deficiency of phosphatidylinositol phosphate phosphatase MIP/MTMR14 induces a muscle disorder by disrupting Ca2+ homeostasis. Nature Cell Biology. 2009; 11:769-776

    Featured in the Press Release for Nature and Nature research journals, May 24, 2009    (http://www.nature.com/ncb/press_release/ncb0509.html).

  • Xu, D., S. Wang, W. M. Yu, Chan, T. Araki, K. D. Bunting, B. G. Neel, and C. K. Qu. A germline gain-of-function mutation in Ptpn11 (Shp2) phosphatase induces myeloproliferative disease by aberrant activation of hematopoietic stem cells. Blood. 2010; 116:3611-3621

  • Xu, D., X. Liu, W. M. Yu, H. Meyerson, C. Guo, S. L. Gerson, and C. K. Qu. Non-lineage/stage restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on leukemia stem cell development. The Journal of Experimental Medicine. 2011; 208:1977-1988

  • Liu, X., H. Zheng, and C. K. Qu. Protein tyrosine phosphatase Shp2 (Ptpn11) plays an important role in maintenance of chromosome stability. Cancer Research. 2012; 72:5296-5306

  • Yu, W. M., X. Liu, J. Shen, J. Jovanovic, E. E. Pohl, S. L. Gerson, T. Finkel, H. E. Broxmeyer, and C. K. Qu. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell. 2013; 12:62-74

    Featured in a Research Highlight in Nature Reviews Molecular and Cell Biology (2013; 14:64) (http://www.nature.com/nrm/journal/v14/n2/full/nrm3515.html) and in an Editorial in Cell Stem Cell (2013; 12:1-3) (http://www.sciencedirect.com/science/article/pii/S1934590912007102).

  • Liu, X., H. Zheng, T. M. W. M., Yu, Cooper, K. D. Bunting, and C. K. Qu. Maintenance of hematopoietic stem cells ex vivo by reprograming cellular metabolism. Blood. 2015; 125:1562-1565

  • Liu, X., H. Zheng, X. Li, S. Y. Wang, H. J. Meyerson, W. Yang, B. G. Neel, and C. K. Qu. Gain-of-function mutations of Ptpn11 (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage-induced malignancies. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113:984-989

  • Gu L., H. Zhang, T. Liu, S. Zhou, Y. Du, J. Xiong, S. Yi, C. K. Qu, H. Fu, and M. Zhou. Discovery of dual inhibitors of MDM2 and XIAP for cancer treatment. Cancer Cell. 2016; 30: 623-636

  • Dong, L., W.M. Yu, H. Zheng, M. L. Loh, S. T. Bunting, M. Pauly, G. Huang, M. Zhou, H. E. Broxmeyer, D. T. Scadden, and C. K. Qu. Leukemogenic effects of Ptpn11 (Shp2) activating mutations in the stem cell microenvironment. Nature. 2016; 539:304-308                 Featured in News and Views in Nature 2016; doi:10.1038/nature19479) (http://www.nature.com/nature/journal/vaop/ncurrent/full/nature19479.html) and in Research Watch in Cancer Discovery (2016; 6:1302-1302) (http://cancerdiscovery.aacrjournals.org/content/6/12/1302.2), and Emory News Release (http://news.emory.edu/stories/2016/10/bad_neighbors_nature_qu_ptpn11/).

  • Liu W., W. M. Yu, J. Zhang, R. J. Chan, M. L. Loh, Z. Zhang, K.D. Bunting, and C. K. Qu. Inhibition of the Gab2/PI3K/mTOR signaling ameliorates the myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations. Leukemia. 2016. In press.

Under construction.

                                                                             POST-DOCTORAL POSITION AVAILABLE

 

A post-doctoral position is available to investigate the molecular mechanisms by which genetic mutations of protein tyrosine phosphatase PTPN11 (SHP2) induce childhood leukemias, and to use this knowledge to develop novel therapeutics for these diseases. Research in our laboratory is centered on the signaling and metabolic mechanisms involved in normal and malignant hematopoiesis (Nature. 2016; 539:304-308; PNAS. 2016, 113:984-989; Blood, 2015, 125:1562-5; Cell Stem Cell. 2013, 12:62-74; J. Exp. Med. 2011, 208:1977-1988). We are particularly interested in the regulation by protein and lipid phosphatases, including PTPN11, in hematopoietic stem cell biology and in leukemogenesis. A variety of experimental approaches, such as mouse genetics, biochemical, and stem cell technologies are undertaken in these studies. Candidates should have a Ph.D. degree with a strong background in molecular biology and cell biology. Previous experience in cell signaling and experimental hematology is preferable. Interested individuals should send their curriculum vitae and the names and addresses of three references to:

 

C. K. Qu, M.D., Ph.D.

Professor

Department of Pediatrics, Division of Hematology/Oncology

Aflac Cancer and Blood Disorders Center

Children’s Healthcare of Atlanta

Emory University School of Medicine

1760 Haygood Drive NE, HSRB E302

Atlanta, GA 30322

 

Email: cheng-kui.qu@emory.edu